Features

1. Wide band linear output type
(Frequency band width: TYP. 10Hz to 8 MHz)
2. Fluctuation free stable output (Output fluctuation : TYP. $\pm 5 \%$ at within operating temperature 50000 hr)
3. High isolation voltage
$\left(\mathrm{V}, . .: 5000 \mathrm{~V}_{\text {rms }}\right)$
4. Standard dual-in-line package
5. Recognized by UL, file No, E64380

Applications

1. Video signal insulation in TV
2. Insulation amplifier in measuring instrument and FA equipment

Wide Band Linear Output
 Type OPIC Photocoupler

Outine Dimensions

* "OPIC" (Optical IC) is a trademark of the SHARP Corporation An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.

Absolute Maximum Ratings			$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	
	Parameter	Symbol	Rating	Unit
Input	Forward current	IF_{F}	25	mA
	Reverse voltage	V_{R}	6	v
	Power dissipation	P	45	mW
output	Supply voltage	VCC	-0.5 to +13	v
	Output power dissipation	P_{0}	250	mW
	Output current	Io	-1.0 to +0.5	mA
*isolation voltage		$\mathrm{V}_{\text {iso }}$	5000	$\mathrm{V}_{\text {rms }}$
Operating temperature		$\mathrm{T}_{\text {opr }}$	-25 to +85	"
Storage temperature		$\mathrm{T}_{\text {stg }}$	-55 to +125	" ${ }^{\text {c }}$
${ }^{* 2}$ Soldering temperature		$\mathrm{T}_{\text {sol }}$	260	${ }^{\circ} \mathrm{C}$

*1 40 to $60 \% \mathrm{RH}, \mathrm{AC}$ for 1 minute
*2 For 10 seconds

Electro-optical Characteristics
(Unless otherwise spcified, $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter			Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Fig.
Input	Forward voltage		V_{F}	$\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}$	-	1.6	1.8	V	1
	Reverse voltage		$\mathrm{I}_{\text {R }}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$	-
	Terminal capacitance		$\mathrm{C}_{\text {t }}$	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$	-	60	250	pF	-
output	Supply current		Icc	$\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}$	-	9	16	mA	1
	DC output voltage		Vodi	$\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}$	4	6	8	V	1
	Output noise voltage		Vono	$\mathrm{IF}=10 \mathrm{~mA}$, Band width = 100 Hz to 4.2 MHz	-	4	-	mV mms	1
Transfe charac. teristics	AC output voltage		Voac	$\mathrm{RE}=230 \Omega$	0.8	1.0	1.2	$\mathrm{V}_{\mathrm{P}} \mathrm{P}$	2
	AC output voltage fluctuation	\#Temperature characteristics	A Voac i	$\begin{aligned} & \mathrm{R}_{\mathrm{E}}=230 \Omega, \\ & \mathrm{Ta}=10 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	-	± 3	-	\%	2
		* Forwarid curent charaterisios	A V ${ }_{\text {OAC }} \cdot 2$	$\mathrm{RE}=230$ to $460 \boldsymbol{\Omega}$	-	± 3	-	\%	2
	*3cut-offfrequency	High frequency	fCH	Re $=230$ ת	6	8	-	MHz	2
		Low frequency	fCL	$\mathrm{Re}=230 \Omega$	-	10	20	Hz	2
	Differential gain		DG		-	+3	-	\%	3
	Differential phase		DP		-	-3	-		3
	Isolation resistance		$\mathrm{R}_{\text {sio }}$	DC500V, 40 to $60 \% \mathrm{RH}$	5×10^{10}	1×10^{11}	-	Ω	-
	Floating capacitance		C_{4}	$\mathrm{V}=\mathrm{O}, \mathrm{f}=1 \mathrm{MHz}$	-	0.6	5	pF	-

*1 Fluctuation ratio of $V_{O A C}$ at $\mathrm{Ta}=-10$ to $70^{\circ} \mathrm{C}$ on the basis of VOAC at $\mathrm{Ta}=25^{\circ} \mathrm{C}$
*2 Fluctuation ratio of $V_{\text {OAC }}$ at $R_{E}=230$ to 460Ω on the basis of $V_{O A C}$ at $R_{E}=230 \Omega$
$* 3$ Frequency of V_{IN} when $\mathrm{V}_{\text {oac }}$ falls by 3 dB on the basis of $\mathrm{V}_{\mathrm{OAC}}$ when frequency of V_{IN} in Fig. 2 is 100 kHz

Recommended Operating Conditions

	Parameter	Symbol	MIN.	MAX.	Unit
Input	Forward bias current	IFB	8	15	mA
output	Supply voltage	Vcc	8	13	v
	AC output voltage	V oac	-	4	VP.P
	Output current	Io	-0.6	+0.2	mA
	C terminal capacitance	Cc	10	-	$\mu \mathrm{F}$

Test Circuit

Fig. 1

Fig. 2

Vu Waveform

(Frequency) 15 kHz at measuring VoAc, $\triangle \mathrm{V}_{\mathrm{OAC}-1}$ and AVOAc .2 and shall be Wept at measuring ${ }^{\dagger} \mathrm{CH}$ and ${ }^{\mathrm{f}} \mathrm{CL}$.

Fig. 3

$T_{r 1}, T_{r 2}:$ 2SA1 029 or other same rank products
V. Waveform

Fig. 4 Forward Currant vs. Ambient

Fig. 5 Power Dissipation vs. Ambient Temperature

Fig. 7 Supply Current vs. Ambient Temperature

Test Circuit of Supply Current

Fig. 6 Forward Current vs. Forward Voltage

Fig. 8-a Relative AC Output Voltage 1 vs. Ambient Temperature

Teat Circuit of Relative AC Output Voltage 1 ve. Ambient Temperatue

$1 V_{P-P}, f=15 \mathrm{kHz}$ Sine wave

Fig. 8-b Test Circuit of Relative AC Outpert Voltage 2 vs. Freguency (1)

Fig. 8-c Test Circuit of Relative AC Output Voltage 2 vs. Freguency (2)

Fig. 9 Differential Gain vs. Re

Test Circuit of Relative AC Output Voltage 2 vs. Freguency (1)

V, luput Waveform
$1 V_{P-P,} f=15 \mathrm{MHz}$

Test Circuit of Relative AC Output Voltage 2 vs. Freguency (2)

$V_{\text {in }}$ Input Waveform

Fig. 10 Differential Phase vs. Re

Test Circuit of Differential Gain vs. Re and Differential Phase vs. Re

Vh Waveform

APL : Average Picture Level

Application Example

$T_{r 1}, T_{r 2}$: 2SA1029 or other ssme rank products

$$
V_{\mathrm{OUT}}=2.3 \frac{i_{\mathrm{s}}}{\mathrm{I}_{\mathrm{B}}}=2.3 \frac{V_{\mathrm{in}}}{V_{\mathrm{CC}}-V_{\mathrm{E}}}
$$

IB: DC flowed to infrared LED
i_{s} : AC flowed to infrared LED
V_{E} : Emitter voltage of $T_{r 2}$ (Between emitter and GND)

〈Example of Circuit Setting >

(1) Set for Gain

Gain is represented by the following formula ;
$\mathrm{G}=2.3 /\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{E}}\right)$
When using on condition that $G a i n=1$, set $V_{C C}-V_{F}$ on 2.3 V . So that R_{\mid}and R_{2} is determined.
(2) Set for Input Resistance

Set Ri on output impedance (usually 75Ω) of a mounting equipment.
(3) Set for R_{E}

When there is no signal (input signal : o), set $\mathrm{I}_{\text {mbd }}$ flowed into infrared LED on 10 mA .
(4) Set for Low Cut-off Frequency

Low cut-off frequency with C terminal capacitance, $C C$, is represented by the following formula ;
$\mathrm{f}_{\mathrm{C}}=100 / \mathrm{C}_{\mathrm{C}}(\mathrm{Hz})\left(\mathrm{C}_{\mathrm{c}}: \mu \mathrm{F}\right.$ value $)$
Then set Ci with input impedance of by-pass diode on as much value as possible on condition that $\mathrm{f}_{\mathrm{c}}>1 /(2 \pi \mathrm{CiR})\left[\mathrm{R}=\mathrm{R}_{1} \mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right]$

- Precautions for Use

(1) It is recommended that a by-pass capacitor of more than $0.01 \mu \mathrm{~F}$ is added between V_{CC} and GND near the device in order to stabilize power supply line.
(2) Handle this product the same as with other integrated circuits against static electricity.
(3) As for other general cautions, refer to the chapter "Precautions for Use" (Page 78 to 93)

